Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin.
نویسندگان
چکیده
Myosin VI is a reverse direction myosin motor that, as a dimer, moves processively on actin with an average center-of-mass movement of approximately 30 nm for each step. We labeled myosin VI with a single fluorophore on either its motor domain or on the distal of two calmodulins (CaMs) located on its putative lever arm. Using a technique called FIONA (fluorescence imaging with one nanometer accuracy), step size was observed with a standard deviation of <1.5 nm, with 0.5-s temporal resolution, and observation times of minutes. Irrespective of probe position, the average step size of a labeled head was approximately 60 nm, strongly supporting a hand-over-hand model of motility and ruling out models in which the unique myosin VI insert comes apart. However, the CaM probe displayed large spatial fluctuations (presence of ATP but not ADP or no nucleotide) around the mean position, whereas the motor domain probe did not. This supports a model of myosin VI motility in which the lever arm is either mechanically uncoupled from the motor domain or is undergoing reversible isomerization for part of its motile cycle on actin.
منابع مشابه
Switch between Large Hand-Over-Hand and Small Inchworm-like Steps in Myosin VI
Many biological motor molecules move within cells using stepsizes predictable from their structures. Myosin VI, however, has much larger and more broadly distributed stepsizes than those predicted from its short lever arms. We explain the discrepancy by monitoring Qdots and gold nanoparticles attached to the myosin-VI motor domains using high-sensitivity nanoimaging. The large stepsizes were at...
متن کاملInterhead distance measurements in myosin VI via SHRImP support a simplified hand-over-hand model.
Myosin VI walks in a hand-over-hand fashion with an average step size of 30 nm, which is much larger than its 10 nm lever arm. Recent experiments suggest that the myosin VI structure has an unfolded and flexible region in the proximal tail which makes such a large step possible. In addition, cryoelectron microscopy images of actomyosin VI show the two heads bound to the actin monomers with a br...
متن کاملMyosin VI walks "wiggly" on actin with large and variable tilting.
Myosin VI is an unconventional motor protein with unusual motility properties such as its direction of motion and path on actin and a large stride relative to its short lever arms. To understand these features, the rotational dynamics of the lever arm were studied by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy during processive motility of myosin VI alo...
متن کاملMyosin VI is a processive motor with a large step size.
Myosin VI is a molecular motor involved in intracellular vesicle and organelle transport. To carry out its cellular functions myosin VI moves toward the pointed end of actin, backward in relation to all other characterized myosins. Myosin V, a motor that moves toward the barbed end of actin, is processive, undergoing multiple catalytic cycles and mechanical advances before it releases from acti...
متن کاملTilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy.
Myosin V is biomolecular motor with two actin-binding domains (heads) that take multiple steps along actin by a hand-over-hand mechanism. We used high-speed polarized total internal reflection fluorescence (polTIRF) microscopy to study the structural dynamics of single myosin V molecules that had been labeled with bifunctional rhodamine linked to one of the calmodulins along the lever arm. With...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 36 شماره
صفحات -
تاریخ انتشار 2004